18. De novo design of programmable inducible promoters

Liu X, Gupta STP, Bhimsaria D, Reed JL, Rodriguez-Martinez JA, Ansari AZ, Raman S   

Nucleic Acids Research, 2019, 47, 10452-10463

17. A regulatory NADH/NAD+ redox biosensor for bacteria.

Liu Y, Landick R, Raman S   |  ACS Synthetic Biology, 2019, 8, 264-273

16. Systems Approaches to Understanding and Designing Allosteric Proteins

Raman S   |   Biochemistry, 2018, 57, 376-382

15. What is the role of circuit design in the advancement of synthetic biology?   

Raman S   |   Cell Systems, 2017, 4, 370-72

14. Engineering an allosteric transcription factor to respond to new ligands  

Taylor N, Garruss A, Moretti R, Chan S, Arbing M, Cascio D, Rogers J, Isaacs FJ, Kosuri S, Baker D, Fields S, Church GM, Raman S   |   Nature Methods, 2016, 13, 177-82

13. Biosensors enable precise user-control of gene expression and real-time monitoring of intracellular metabolites

Rogers J, Guzman C, Taylor N, Raman S, Anderson K, Church GM   |   Nucleic Acids Research, 2015, 43, 7648-6082

12. Evolution-guided optimization of biosynthetic pathways
Raman S*, Rogers J*, Taylor N*, Church GM

Proceedings of National Academy of Sciences, 2014, 111, 17803-8

11. Engineering allostery
Raman S*, Taylor N*, Genuth N, Fields S, Church GM

Trends in Genetics, 2014, 30, 521-28

10. Fully automated high-quality NMR structure determination of small (2)H-enriched proteins
Tang Y, Schneider WM, Shen Y, Raman S, Inouye M, Baker D, Roth MJ, Montelione GT

J Struct Func Genomics, 2010, 11, 223-32

9. NMR structure determination for larger proteins using backbone-only data
Raman S*, Lange OF*, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D

Science, 2010, 327, 1014-8

8. Accurate automated protein NMR structure determination using unassigned NOESY data
Raman S, Huang YJ, Mao B, Rossi P, Aramini JM, Liu G, Montelione GT, Baker D

J Am Chem Soc, 2010, 132, 202-7

7. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K

Proteins, 2009, 77, 114-22

6. CASD-NMR: critical assessment of automated structure determination by NMR
Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HR, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AM.

Nature Methods, 2009, 6, 625-6

5. Structure prediction for CASP8 with all-atom refinement using Rosetta
Raman S*, Vernon R*, Thompson J*, Tyka M*, Sadreyev R*, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim BH, Das R, Grishin NV, Baker D.

Proteins, 2009, 77, 89-99

4. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study
Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA.

Proteins, 2009, 75,147-67

3. Advances in Rosetta protein structure prediction on massively parallel systems
Raman S, Qian B, Baker D, Walker RC

IBM Journal of Research and Development, 2008, 52, 7-12

2. High resolution structure prediction and the crystallographic phase problem
Qian B*, Raman S*, Das R*, Bradley P, McCoy AJ, Read RJ, Baker D

Nature, 2007, 450, 259-64

1. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home
Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmström L, Wollacott AM, Wang C, Andre I, Baker D.

Proteins, 2007,69,118-28.


Department of Biochemistry

441B HF DeLuca Biochemistry Laboratories Building

433 Babcock DriveUniversity of Wisconsin-Madison

Madison, WI – 53706

© 2019 by Raman Laboratory