PUBLICATIONS
38. High-throughput approaches to understand, inhibit, and engineer membrane transporters
Miller ST, Macdonald CB, Raman S
37. Systematic genome-wide discovery of host factors governing bacteriophage infectivity
Chitboonthavisuk C, Martin C, Huss P, Peters JM, Anantharaman K, Raman S
submitted
36. Highly multiplexed design of an allosteric transcription factor to sense novel ligands
Nishikawa KK, Chen J, Acheson JF, Harbaugh SV, Huss P, Frenkel M, Novy N, Sieran HR, Lodewyk EC, Lee DH, Chavez JL, Fox BG, Raman S
submitted
35. Discovering genetic mechanisms and controlling cell states at scale
Frenkel M, Raman S
Trends in Genetics (accepted)
34. Bacteriophage-host interactions in microgravity onboard the International Space Station
Huss P, Chitboonthavisuk C, Meger A, Nishikawa K, Oates RP, Mills H, Holzhaus O, Raman S
submitted
33. Discovering chromatin dysregulation induced by protein-coding perturbations at scale
Frenkel M, Corban J, Hujoel MLA, Morris Z, Raman S
Nature Biotechnology, doi: 10.1038/s41587-024-02347-4, 2024
Liu Z, Gillis T, Raman S, Cui Q
eLife, https://doi.org/10.7554/eLife.92262.2
31. Computation-guided redesign of promoter specificity of a bacterial RNA polymerase
Liu X, Meger AT, Gillis TG, Raman S
submitted
30. Deep metagenomic mining reveals bacteriophage sequence motifs driving host specificity
Huss P, Kieft K, Meger A, Nishikawa K, Anantharaman K, Raman S
submitted
29. Rugged fitness landscapes minimize promiscuity in the evolution of transcriptional repressors
Meger AT*, Spence MA*, Sandhu M, Jackson CJ, Raman S
Cell Systems, 15, 374-387, 2024
28. High-throughput approaches to understand and engineer bacteriophages
Huss P*, Chen J*, Raman S
Trends in Biochemical Sciences, https://doi.org/10.1016/j.tibs.2022.08.012, 2022
Leander M*, Liu Z*, Cui Q, Raman S
eLife https://doi.org/10.7554/eLife.79932, 2022
26. Engineering a dynamic, controllable infectivity switch in bacteriophage T7
Chitboonthavisuk C, Luo CH, Huss P, Fernholz M, Raman S
ACS Synthetic Biology, 11, 286-296, 2022
25. Virus-associated organosulfur metabolism in humans and environmental systems
Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlff J, Esser SP, Probst AJ, Raman S,
Roux S, Anantharaman K
Cell Reports, 36, 109471, 2021
24. Epistasis shapes the fitness landscape of an allosteric specificity switch
Nishikawa KK, Hoppe N, Smith R, Bingman C, Raman S
Nature Communications, 12, 5562, 2021
Huss P, Meger A, Leander M, Nishikawa K, Raman S
eLife, DOI:10.7554/eLife.63775, 2021
22. Computation-guided design of split protein systems
Dolberg TB, Meger AT, Boucher JD, Corcoran WK, Schauer EE, Prybutok AN, Raman S*, Leonard JN*
*co-corresponding authors
Nature Chemical Biology, 17, 531-539, 2021
21. Functional plasticity and evolutionary adaptation of allosteric regulation
Leander M, Yuan Y, Meger AT, Cui Q, Raman S
Proceedings of the National Academy of Sciences, 117, 25445-54, 2020
20. Engineered bacteriophages as programmable biocontrol agents
Huss P, Raman S
Current Opinion in Biotechnology, 2019, 61, 116-121
19. Design of a transcriptional biosensor for the portable, on-demand detection of cyanuric acid
Liu X, Silverman AD, Alam KK, Iverson E, Lucks JB, Jewett MC, Raman S
ACS Synthetic Biology, 2020, 9, 84-94
18. De novo design of programmable inducible promoters
Liu X, Gupta STP, Bhimsaria D, Reed JL, Rodriguez-Martinez JA, Ansari AZ, Raman S
Nucleic Acids Research, 2019, 47, 10452-10463
17. A regulatory NADH/NAD+ redox biosensor for bacteria.
Liu Y, Landick R, Raman S
ACS Synthetic Biology, 2019, 8, 264-273
16. Systems Approaches to Understanding and Designing Allosteric Proteins
Raman S
Biochemistry, 2018, 57, 376-382
15. What is the role of circuit design in the advancement of synthetic biology?
Raman S
Cell Systems, 2017, 4, 370-72
14. Engineering an allosteric transcription factor to respond to new ligands
Taylor N, Garruss A, Moretti R, Chan S, Arbing M, Cascio D, Rogers J, Isaacs FJ, Kosuri S, Baker D, Fields S, Church GM, Raman S
Nature Methods, 2016, 13, 177-82
13. Biosensors enable precise user-control of gene expression and real-time monitoring of intracellular metabolites
Rogers J, Guzman C, Taylor N, Raman S, Anderson K, Church GM | Nucleic Acids Research, 2015, 43, 7648-6082
12. Evolution-guided optimization of biosynthetic pathways
Raman S*, Rogers J*, Taylor N*, Church GM
Proceedings of National Academy of Sciences, 2014, 111, 17803-8
11. Engineering allostery
Raman S*, Taylor N*, Genuth N, Fields S, Church GM
Trends in Genetics, 2014, 30, 521-28
10. Fully automated high-quality NMR structure determination of small (2)H-enriched proteins
Tang Y, Schneider WM, Shen Y, Raman S, Inouye M, Baker D, Roth MJ, Montelione GT
J Struct Func Genomics, 2010, 11, 223-32
9. NMR structure determination for larger proteins using backbone-only data
Raman S*, Lange OF*, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D
Science, 2010, 327, 1014-8
8. Accurate automated protein NMR structure determination using unassigned NOESY data
Raman S, Huang YJ, Mao B, Rossi P, Aramini JM, Liu G, Montelione GT, Baker D
J Am Chem Soc, 2010, 132, 202-7
7. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K
Proteins, 2009, 77, 114-22
6. CASD-NMR: critical assessment of automated structure determination by NMR
Rosato A, Bagaria A, Baker D, Bardiaux B, Cavalli A, Doreleijers JF, Giachetti A, Guerry P, Güntert P, Herrmann T, Huang YJ, Jonker HR, Mao B, Malliavin TE, Montelione GT, Nilges M, Raman S, van der Schot G, Vranken WF, Vuister GW, Bonvin AM.
Nature Methods, 2009, 6, 625-6
5. Structure prediction for CASP8 with all-atom refinement using Rosetta
Raman S*, Vernon R*, Thompson J*, Tyka M*, Sadreyev R*, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim BH, Das R, Grishin NV, Baker D.
Proteins, 2009, 77, 89-99
4. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study
Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA.
Proteins, 2009, 75,147-67
3. Advances in Rosetta protein structure prediction on massively parallel systems
Raman S, Qian B, Baker D, Walker RC
IBM Journal of Research and Development, 2008, 52, 7-12
2. High resolution structure prediction and the crystallographic phase problem
Qian B*, Raman S*, Das R*, Bradley P, McCoy AJ, Read RJ, Baker D
Nature, 2007, 450, 259-64
1. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home
Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka MD, Bhat D, Chivian D, Kim DE, Sheffler WH, Malmström L, Wollacott AM, Wang C, Andre I, Baker D.
Proteins, 2007,69,118-28.
PATENTS
De Novo Design of Allosteric Protein Sensors, 2021
Church GM, Raman S, Taylor ND
Methods of designing programmable inducible promoters, 2018
Raman S, Ansari AZ, Liu X, Rodriguez-Martinez JA
Ratiometric biosensor to measure intracellular NADH/NAD+ redox, 2019
Raman S, Liu Y, Landick R
Sensor for cyanuric acid detection, 2021
Raman S, Liu X
Methods of making unbiased phage libraries, 2022
Raman S, Huss P